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APPLICATIONS TO THE THEORY OF THE SHOCK TUBE

ABSTRACT --

The theory of plane shook and adiabatic waves is presented in an
easily derived manner together with sufficient background material to
enable the novice in the field to grasp the fundamentals required for
further study, The application of the basic theory to the shook tube
as a research instrument is given together with some experimental re-
sults to illustrate the calculations. Certain conceptions of energy
and its relation to the impulse in a shook wave are presented i,-'
manner not used in the literature.
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INTRODUCTION

The theory of shook waves has boon covered in many excellent papers
by British and Anrioan authors, notably G. I. Taylor and W. G. Penney
of England ,. and J. von Neumarnn, J. Kirkwood, G. Kistiakowsky and
E. B. Wilson, S. Chandrasekhar, and others of this country. It is the
purpose of this paper to present some of their results in an easily
derived manner together with certain background material which would
make it possible for the uninitiated quickly to gain a certain per-
spective in the field with the object of applying this background to
applications of the shook tube as a research instrument. Certain con-
ceptions of energy and its relation to the impulse in a shock wave are
presented in a manner not used in the literature, and experimental re-
sults are quoted to show the validity of certain assumptions nacessary
for such relationships to hold.

The use of a bursting diaphragm in a tube as a method of producing
shook waves is covered in a phenomenological report by W. Payman and
W. C. F. Shepherd in 1941. They attribute its earliest conception to
P. Vielle in 1899. A calculation of the shook wave prestures to be
expected thereby was carried out by A. H. Taub in 1942. Certain experi-
mental work on the tube as a primary standard of blast wave pressures-
was done by G. T. Reynolds, and extended in a series of quite accurate
measurements by W. T. Read who found that the experimental pressures
varied about 6 percent from those calculated from tube theory.
L. G. Smith has used the tube as an aid in studying experimentally the
reflection of shock waves at oblique incidence. It has been used as
an instrument in the study of bursting diaphragms from incident shook
waves and as an adjunct to the development of piezo-electric pressure
gauges. Certain proposals have been mado for using the tube on a
fairly large scale for tests on land mines and other devices exposed to
explosive blast in an effort to reproduce field results in the labora-
tory.

It is the earnest hope that this paper may provide sufficient back-
ground so that persons who have not previously used the tube may readily
understand in a quantitative way the phenomena that may be obnorved,

I. THE PROPAGATION OF FINITE ADIAIArIC WAVES III A TUBE

The derivation of the properties of one-dimensional finite waves
can be carried out quite readily by considering a slice of gas in a tube
bounded by planes at x and at x + dx as shown below.

SjP

x x +dx

The gas in the thin slice is assumed to have a density/0 and a
particle velocity u, both of which are functions of time. Then one can

7



write for the foroes on the slioe

X d (u) - where u = f(t) (1.1)

dui ~8 U dx= au 19 and - C)~ F
0 at &x 8 x -X

So from equation (1.1) me hsoye the familiar equation of motion for
a gas in a tube.

a + u + _ , (I.2)9t u x P 37"

The equation of oontinuity Is

a tP-) -
(1.3)

Wb x PA-r butsainoe/0 f (U)

a dand d au

we have, after making indioated changes of variable,

Id& Au.- u d A u, dU d
at0

Cancelling d the equation of oontinuity may be written as

u.a + du r -+ (u . du u( .)

Since P = f(O) andP= f(u) we have that

x r and _SIA = d1

so that a d P rd 4 O
C1x"d 'du )X

Substituting this expression into the equation of motion (1.2), we see
that it may be written as

u 1dP~~ d u+ U+ dP dPO) au O (.)

These two equations (I.2a and 1*3a) may be made oonsistent if

du .1 du 2 1 (4

8



du 1 , (z.4a)

"~

and therefore u = P.)

This is the expression fori'the particle velocity in terms of the
pressure and density for waves which travel in one direction.

Returning to the equation (r,2a) of motion we see that

+ rPfrom equation (4)

so that we have

Q (u + dP ___ 0 whih equalst - p A W, x

, -+ (u + d? au (16

For an adiabatic compression or expansion = k

but = where a is the local velocity of sound in the medium then/4t

and the equation of motion reduces to

U+ (u + a) (ea)

If we wish to find the velocity of , section of the wave of con-
stant particle velocity and conse.quently constant pressure we oan do so
by letting u be a constant so that du =0

but sinoe u =f(x t) du au dt + dx =0

Sdx 5 velocity of propagation of that
Ou section of the wave
ax

But from (X.6a) we see that
a u

-- " =(u-+a) -x

9



so that the velocity of propagation of a section of the wave of constant
partiale velocity is equal to (a + u).

u=a+u (I.)

The sign of u is positive if the partiole velocity has the same
direction as the wave propagated in the medium and is negative if the
two are in oppoaite directions. The. local velocity of sound a will be
a funotion of the pressure P as will' the particle velocity u.

AIf the wave is an adiabatic compression (not a shook wave) then we
may evaluate the particle velocity u and the local velocity of sound as

follows: Assume 'that P = P 4-) for an adiabatic pressur change

then = dP 0 ,V-

0 2

,E~i

but ( - ) = -vthe velocity of sound in the mediun into which the

wave advances. P-

Sotha + (-)2 a (- 11(.a

-0, o-.

p0  00

but L=(€ o)

2 PO

particle velocity for a compressional wave,

In the same manner we find that the particle velocity for a rare-
faotion wave is

Where a is again the velooity of sound in the medium into which the

0

wave advances.
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The local velocity of sound a is related to the velocity of sound a in
a medium of pressure P 0 and density /°0 as follows- - Y

-1 -d-
z =0 ?,P St - 'P)( r - (

4 o R 'Zor0 0 0 fo 01

so that a =a (I.10)
.0

The velocity of a section of compressional wave of constant particle
velooity advancing into an undisturbed medium is

Vuolsat a(..)+ - y 0  .-. 4'-1]- .,
oL o

If Y = 1,4 then

Vu=oona rant r (1.1006)

This ia the velocity also for a rarefaction wave advancing into a
medium of pressure P and density 4 0 and particle velocity uo = Os

From equation (I9lOa) it can be seen that the higher pressure parts
of a wave will travel faster than the lower pressure parts so that a
finite compressional wave would assume the shapes shown below in time
sequence.

a b o d

while a rarefaction wave would assiare the followin _direetion of
" .a --" propagation

a'bs c' dt

A compressional wave tends to assume a steeper slope at the front

of the -wave while A rarefeotion wave tends to become less steop and to
change shape in the opposite direction* The case (d) of the compress-
ional vwve can not happen for the front has a double value of pressure
but. the .front doeo become vertical with the formstion of a shook wave.
.which dcis not obey the same equations as does the adiabatic waves.,
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The rarefaotion waves however obey the adiabatic equations at least to
the trough of the wave, It can be seen that there is a tendency to form
a secondary shook in the tail of the rarefaction wave. This phenomenon
will not be treated here. The shook wave when formed obeys a set of
conditions embodied in the Rankine-Hugoniot equation which will be de-
rived in a suooeeding section.

IL THE REFLEGTION AND TRUSMISSION OF ADIABATIC WkVMS AT A DISCONTINUITY

() Compressional Waves.

The sequence of events where an adiabatio wave meets a discontinuity
can be shown by the following sketch.

denser medium

p 3 P2 less dens*

Ul
p•a e .___ _ ____e____

Poa 11 ulPOA

The velocity of sound on the right of the boundary is a and n the
left of the boundary is a1. The pressure initially is the same on both

sides and is Pc~ An adiabatic wave moving to the right with a pressure

P', particle velocity ul, and velocity of sound behind front of a2
approaches the boundary, Depending on the conditions a wave of greater
or lesser amplitude will be transmitted, while a compressional or rare-
faction wave will be reflected to the left* The pressure and the
particle velocity behind the transmitted wave are P2 and u2 , respectively,

while the pressure and the particle velocity of the reflected wave are
P and u.

The two conditions which must be satisfied at the boundary are

P2 = P3  pressures equal (11.1)

and uI -u3 =u 2  particle velocities equal (11.2)

The values of the particle velocities are (if'.: 1.4)
" 1 /7u_,I ,

u2 5& [ 'V" P24

12



1/7

but a2' = a(1  )1..
VP3 P 1' h 7-

Then from equation (11.2) we harvn

p / 1/7 p o 1/7 P1  A P2 (/ 1

LA r Iw1 + (it) J )" (r) I(Is
0 0 0

and since P2 = P3 from equation (I1.1) we have

(2)(it a +a aA II?
S,10 1

or in more useful form

1/7~ 2 a1 -a1/7(+I1.8)/
2 + a1  1 . a2  0

It the boundary is a rigid wall so that u2 = 0 then we have

u1 = u3  (1I.9)

and al o - =al [ o1 - (II.10)

or P31/7 = 2P 1/7 - 0o1/7 (II.ii)

(b) Rarefaction Waves.

We show a similar sketch for the sequence of events with a
slightly different notation to adapt it to the notation in the other
sections,

* less dense medium

- ~P P

0 -denser medium

13



Where P and c are the pressure and sound velooity on the right
of the boundary ano P and a1 are the pressures end sound velooities

on the left of the boundary. A rarefeotion wave of pressure Pr 1

particle velocity Ul, and sound velocity behind the front of a2 ,

approaches from the left. Depending on the values of a1 and a a rare-

faction or a small compression ways is reflected, while a rarefaotion
of greater or lesser amplitude is transmitted. The preseure and
partials velocity behind the transmitted wave is 2 and u2 while
those behind the refleoted wave are Pr and u3 rospeotive],o

The oonditions to be satisfied are

Pr = Pr (W1.s)
2 3

and u 3 ' u2  (II.2a)
L~ E Pr1 1/7 t

where u 5a 1  (31.12)

U 5= S o I ] (2.1)

[o lT T] (1I.14)

Pr P/.

1/7 17
but a2 a I FP 

/7
so u3  Sa 5a1  . (.v) ] (U.1,,)

Equating the particle velocities we have sinoe Pr Pr
2 3

2 a1  1/7
()1/17 c. 1  1/4 1 a 1 /(7.5
2 .

Similarly for refleotion against a rigid wall where u a 0 we

14



have the conditions

Pr 1/7 = I / (11.16)
3 1 -

These are seen to be identical in form with those derived for com-
preesional waves.

II.,DERIVATION OF TBE RANKINE-IJGONIOT EQUATIONS FMI A SHOCK WAVE

If a shook wave travels with a velocity U into undisturbed air
(air at velocity uO = 0 in which the pressure is P0 and the density

is ,o ) and if the air behind the shock is at a pressure P, density/O,

and is moving with a velocity u, then, by using the fact that for a
unit mass of air crossing the shook front we must have mass, momentum
and energy conservation, we obtain equations involving U, P, p 0 U,
PC, /a 0 and u° which are known as the Rankine-Hugoniot equations. We

derive them as follows

, 0 Uo 0o

Let us consider an observer that moves with the shook front. In
one second the amount of matter that crossed (from the right) a unit
cross section of the wave front is /0 o U. This must equal the amount

that gets away from the left face of tiLe cross section in the same
interval of time, viz.,/o (U - u). Hence we obtain the conservation
of mass equation.

/0 (U - u) /0° U = m conservation of mass (II1.1)

The momentum of the mass /00 U is /o U and the momentum of the

I Ass /o (U - u) is /o(U - u) 2 . The change of momentum across the shock
Iront must equal the force acting. This. is the difference of pressure
-% the two sides of the front times the cross section which we have
taken as unity. Hence we obtain the conservation of momentum equation

P - P0 = /% -,o(U .

or

P + /0 (U - U)2 .= P + /00 c o mnservation of (111.2)

- 2~0 moMentum.

To obtain the energy equation we need to know the internal energy
of the unit mass of gas (when it is at a pressure Pc and density Oo).

This is the work done against external pressure when the gas is expanded
adiabatically to zero density. Ae call these internal energies 9 and Eo

15



The work done by pressure per unit area per second on a olwan of

gas of unit cross section (the column extends through the shook front)
is

P U (u- U)

This mst equal the change ih' kinetic energy plus th ohang In
internal energy of the gas* The former in

a U- - j 2]

and the latter is

A(z - 3o)

where E and B are the internal energies of the gas on the left and
0

right sides of the shook front respectively and m is the mass of air
crossing the unit cross section of the front per second and is given by

M.= /o U =,P(U - U)

* Hence we have

P V - P(U - u) I m [ 'u)2 2 (1 -o)

dividing by m we have

Po P r -)2 B2

or

1 conservation of (iirs)
S0 /(3-u) energy

For an ideal gas the internal energy may bo calculated as followss

P where -

heoe Is 1 d .p" 7-p - .

," Ifo P

tl~rr~e = y-'Dl. -



1 Pc

and 1 0

Substituting these values for 3 and 1 into equation (III. ) we obtain

P o P0 1 0 11 .U2

or

Now we may use these fundamental relations to derive the relation
between the velocity of the shook wave and its pressure together with
certain valuable information concerning the gases behind the shook.
From equations (III.1) and (111.2) it follows that

P" P- O =P M U " (U-u)]

hence

and from the third equation (111.3) we have

PU-~~~ [~T.u.i(U u) 2 U2 ,j(..o
P U - P(U - U)- M €-u J= z o

substituting from above we have

which when cleared becomes

" (P + P) u - al = . E bt m 'P ou =/ (U - U)

which then is

1 (P p __- .E -- E ,,(1

T 0L E /0 0 (
This equation may be interpreted as saying that the increase of

internal energy aross the shock front is due to the work done by the
mean pressure in performing the compression.

From equation (111.4) we may solve for - which we do by

multiplying the expression by/O and dividing by P then

17



PP /0 10

and x ,
. /00

Then it may be written

i¥ + M)x 1) aT- (y "X)

the solution of whioh in

= zr-l + ir+l Y -ratio of densities (1115)

Fcm equation (III.1) we have= o
u= U

Henoe equation (III.a) may be writted as
2A

: + 000 U2 = + O 2 (P P

P P P -1= po€1-= -T (Y" i- )_

r ,0 0 2

Let = a where a o is the velooity of sound in the undisturbed
/00

medium.

S(. ) ind iubstituting from above we have
X "r

tr -1 + t ?-+1F

Therefore the first of the important derived relations is the velooity
pressure.relationship for the shook wave

L 1 r-1 v (re) olocity of shook wave (111.6)

18



From 'equation (III,1) we have

u = -y- 0
hence U 1 0 u-+ +

orU - 2 $ ratio of particle velocity to shook (111.7)

velocity.

If ao 21 where o is the velocity of sound behind the shook front

0~ * / . /'
0 -o

0 2 +1 + (Y -1)y- ratio of velocities of sound behind and in
r -t - (r4l)yJ front of shook wave. (III.8)

From equation (111.6) and 111.7) we can derive the ratio of the particle
velocity behind the shock front to the speed of sound in front of shook

u(2 ) .9),z r- (Ir l)yj

These equations although derived for a shock wave moving into still
air, u0 = 0, will hold for a shook wave moving into air traveling with
a uniform velocity u , if we understand U to mean the velocity of the
front relative to the moving air.

If the medium into which the shock waves travel is air which has
a r"equal to 1.4 these equations may be simplified and rewritten using

P03= =y-

0

S1+ 6 y 7 + 6 z
/0 6 + y ( .5)"

U2  l+ 6 y 1+- (11.6)
2-;. 7 7

U S(y- 1) 5 z
V I + 6 y = 7 -1 (III.Ta)

2o6
0 = Y( 6+ yI (z + 1) 7+ +

19



25(y- 1)2  25 ( 2

Three of these quantities are plotted in the following pages
(Graphs 1, 2, and 3) a. functions of the excess pressure behind the
shook in pound. per square inoh* The excess pressure is (P - Po)

where P is assuned to be 14.7 pounds for ooputatioual purposes.
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IV, REFLECTION OF SHOCK WAVES

When a shock wave strikes perpendicularly on a flat surface, a
. shoo wave is reflected. The pressure at the surface jumps instantane-
ously from the atmospheric pressure Pc to the pressure P behind the
reflected shook wave. At a point close in front of the iefleoting
plan. the pressure first changes to P the pressure behind the incident
shook wave and then to P as the reflected wave reaches it. 'The
relationship between r = Pri n d 'y = PAO can be derived from the
shook wave equations.

air velocity U0 U
Diagram

Before reflection 4 sound velocity a aO  showing

pressure P P positions

._ __ __La at which

air velocity u-0 0 symbols

apply.
After reflection sound velocity o or

pressure . P Pr
rr

If u is the velocity of the air behind the incident shook wave,
U the velocity of propagation in still air, a the velocity of sound
in the undistrubed air, U the velocity of propagption of the re-
flected wave and o the velocity of sound in air behind the incident
wave, the shock wave equations for the incident wave ares

U2  1 1 + ( 4 (1V.)

0

F r*l + Cr-)y(v.3)a 2 LY +- F +l)y]

0

u2 2(y -1) 2
a rCr -I + +yj ,v130

0

The reflected shook wave advances with a velocity u 4 U relative
to air in which the velocity of sound is o. The velocity oithe air
behind the reflected wave relative to that in front is u as in the

24
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inoident wavej thus the equations for the refleoted wave ares

2(yr - 1)

r UP+ r

then

u 2(r - 1)

rrl~

02 rr+1+ ( Ku1)Yr Lr-1 +"(r~l~y (IV.6)

and in refleoted wave

U. 2 '(Yr )(IV.)

2~~.J (Tv+l~y-

Here o is the velocity of Romd in the air behind the refleoted
wave. The Felationship bet teen y and y is found by elminatLing u,
a . and c between equations (IV.3), (IV.4), *nd.(IV.7). From (TV,3),
and (IV.4) we have

U. (Iv.a)

Equating this te (IVM) we have

(-i2 (Yr l)2

1+ ((IV.8)

If one assumes , for air equal to 1.4 then equation (IV*8) beocomes

2.
Cy 2  (Y l) (IV,a)7(6 + Y) =  1 + 6 r(.)

This can be expanded into

y 2 2+ 6 y yr2 + 8 y 6 Y + .

Yr r r

and factored
8 y(l - yr) -.6 Yr(l- y yr) Y 2 - 2

which equals

.8 - 6 Yr 1 + y Y (Iv.8b)

25



P + P
Lt P P a P 0 then' F 0

5 0. 0,
Pf + Pc

F = P + "

After substituting into (IVoBb) anf'd manipulating one arrives at the

relationship

P f 7? o 0 4F s

50 0

This is the relationship between the reflected excess pressure
over atmospheric and the incident excess pressure over atmospheric.

This is the s3waz as the relationship between gauge pressures measured
face on and side on to the blast wave.

It is apparent that for weak ohooks where 0

Pf

and for very strong shocks where Io

Pf

Pressures for intermediate strength shocks are plotted on the next

page. (Graph 4)

V. THEORY OF SHOCK WAVE FCRM&TION IN A TUBE FROM A BURSTING DIAPHRAGM

Consider a tube of constant cross section closed at one end, with
a gas-tight diaphragm fixed at some point in the tube in such a way
that a section of the tube bounded by the closed end and the diaphragm
may be pumped up to a pressure PC* while the remainder of the tube re-
mains at a pressure Poe Then if tho diaphragm is suddenly broken by
air pressure or other means a shock wave will be formed in the low
pressure section of the tube advancing along the tube away from the
diaphragm, At the same time a rarefaction wave will be formed in the
high pressure section of the tube which will progress back into the
high pressure gas until it is reflected at the closed end of the con-
pression chamber. Meanwhile the shook wave will progress down the
tube until it is reflected with either positive or negative phase at
the other end of the tube. The sequence of events may be shown in the
following ways

26



Graph 4

Pressures in Incident and Reflected Shook Waves
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d iaphram

S 0.° Pc before breaking

L 7O P 0 at breaking
" 0

P

Pafter breaking
region in which pressure is P, ve-

f wave locity of gas is u. velocity of sound
I-rarofaction is o and velocity of shook wave is U.

wave
From the Rankine-Ilugonoit oquations we have the relationship be-

tweon the particle velocity behind the shook front and bhe pressure
ratio P/ o at the shook front. This isl

u 2 y- i)2 I2 .- (v.1)

p 0  P
where y = , a0  r and u = particle velocity behind shook front.

0
The region behind the diaphragm is propagating a rarefaction wave

because of the relief of pressure by the bursting of the diaphragm. The
velocity of the particles in the rarefaction wave where the pressure is
P is given by

+ 0P d.,-  which has been evaluated in
-- , - equation (I.9)t and found to be

2

where P is the pressure of the region into which the wave advances and
a1 is tfe velocity of sound in this region.

Now F = P. -- P y"

0 r 0

so equation (V,2) becomes [
u +2 L Py= - -_ a1  1- (y V.,a)

These two particle velocities must be equal (at the diaphragm after
breaking); otherwise a local region of vacuum or high pressure will de-
velop in time. So, equating the two particle velocities we have

1) -1
2a 02 (y 1 2* 4a 1 2  ( V3

7CF-I '- + -12 )

YCY-4 ( -l)yV"(.." (yI (v.3)
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Assume a = a, which means that sufficient time must elapse after
pumping up thg compression chamber for the gas to be reducod to ambient
temperature. Extruoting tho aquire root on both aides we have then

__ _ __ _ __ _2 (Y-o

AssumeY 1.4, then

7(1+ 6/y)
P

Of Y - Implicit solution for y (V.4)

1' (1 + 6y)

This equation then gives the pressure in the compression ohamier
before breaking the diaphragm necessary to establish a shook wave of
pressure P travelling down the tube. This relationship is plotted Cn
the following page. (Graph 5). On the second page following is
plotted also the values of excess chamber pressure over atmospheric
and the excess shook wave pressure over atmospheric in pounds per /
square inch. (Graph 6).

The compression chamber pressure may also be evaluated in terms
of a given Mach number M behind the shock front.

Since U- = M 5 z .y from equation (III.9a) (V5)V7 + 6 z) V7 (1 + 6 y)

Equation (V.4) may be rewritten as
Pc

Po Y z+1
7- 7 (V.6)

Solving (V.5) for z in terms of M,

z = 0.84 M2 + 1.4 M 1 + 0.36

and 2ao = I+ .84 M.....4 M0.36 (V. 7)

7'7
o (l - )

1.4 52 4.25

1.2 29.3 3.3

1 16.5 2.5
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Graph 5

?ompression Chwabor Prosauro in Atmospheres

as a Function of

Shock Wave Pressure in Abospheres
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In case gases of different density and Y are used in compression
Qhamber and expansion chamber the relationship between compression
chamber pressure and shook strength will be different.: the gas in the com-
presslon uau, ,ar has t-ma Y and sounu velocity . and th* gas in

the expansion chamber has a gamma V 2 and sound velocity &2 then it can
be shown that

Pc y
0

17Y2 {., Y2 1+ V,. + 1)

For example, if helium is used in the compression chamber and air in the
expansion chamber,

1.66

72 = 1.40

a1  1~
-- = 1.03

a 2

At y =3,

P@ 3 =0

.518 x 2 x 0.66

y2.80 (.40 + 2.40 x
P

For comparison, air in both chambers give o = 11.7 for y : 3.
0
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VI. ADIABATIC THEORY OF THE SHOCK TUBE

An explicit expression for P can be obtained frcm an adiabatic
solution of the bursting diaphragm problem which is approximately
correct and is convenient for calculational purposes. The errors in
the approximation are indicated in tabular form at the end of this
section.

The line of reasoning is the same in this case as in the previous
more exact solution but the expression for the particle velocity be-
hind an adiabatic compressionewave is substituted for that behind a
shook wave.

We have from equation (Io8b) that the particle velocity behind a
compressional wave of pressure P iss

u 0 - particle velocity be- (VI.)
hind. compression wave

and from equation (I.9)the particle velocity behind a rarefaction wave
advancing into a region of pressure P and velocity of sound a1 is$

00

Assume a= a as before and equate the particle velocities giving0 7-1 -i -

i-o) = ( o F0 (VI.3)
0*

but P P Pc Pc
o POo 0 0 0

or PP 2
so 1-( ') =y -. 1(VI.3a)

o r P 
V I 4

.... (wI.4)
-0 (2-y r)-l

and likewise the explicit solution for y is2 Y

S(2) 7 p/p (VI.5)

- '
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If = 1.4 (air) and we lot Po/Po = ) * then

27 W an explicit expression for y (V1.Sa)
1/7 +1 in terms of .

128 o (vI.sb)7~ / + WI- )

also in terms of the same variable

(2- /717 (VI.4a)

The results of equation (V.4) give

,) ,and O 1/7 i/"
[1- _ L (

-. J -.1+(,+6y

Bubstituting this value of t. into equation (VI.5a) and extraoting the
root, we have

1/7 2__ _ _ _ _ _ _ _

ya 1 17 - (y-

v17(1 + 6 y)

so that

Ratio of amplitudes oal-
-- = 12 oulated for the oampress- (V1e6)y [1+ 1/7 i - I) . o~~

+ ~ ~ S 7 i~A~.)~ onal wave under conditionis
L7( /Fi yj of adiabatic and shook waveortion.

These are tabulated as funotions of y

Ya (Ya"- y )

y y x 100

1 1.00 0
2 1.01 1
3 1.02 2
4 1.033 3.3
5 1.05 9.O
6 1.07 7.0
7 1.09 9.0
8 1.115 115
9 , 1.14 14.0

10 1.17 17.0

This table gives an idea of the range of shook pressures over which
the adiabatic expression for y maybe used without too great an error in
results.
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VII. THE PRODUCTION OF ARTIFICIAL BLAST WAVES

(The calculation of the relative dimensions of the tube to pro-
duce shock waves with a peaked top.)

The shape of the shook wves produced by the buruting of a dia-
phragm in a tube will change as the wave progresses down the tube as
shown in the following series of sketches.

I I

tan 5 (4+ - (6yl/ l ly(+.+ 6 y

\\ L- = .. 3

\ ' - 14*3 0
_angle of P =Pc

0
in the trough.

I "

It is obvious that at some point down the tube the rarefaction
tip will catch up with the shock front and a peaked wave will be pro-
duced. It is the position of this point which will be sought in the
analysis. The sequence of events in the tube after the diaphragm has
broken consists of the production of a shock wave traveling down the
expansion tube with a velocity U, followed by a temperature dis-
continuity traveling at a velocity u, and a rarefaction wave traveling
back into the compression chamber. The initial part or tip of the
rarefaotion wave travels back with the velocity of sound b in the
compression chamber which is assumed to be equal to.a0 . TAis tip is then
reflected from the closed end of the compression ciAmber and travels
for a short distance through a variable density region until it reaches
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the gas of constant pressure P. It then travels down the compression

chamber and expansion tube with a constant velocity b until it

reaches the boundary between the cool gas that was originally in the
compression chamber and the gas passed over by the shook wave willah
has been compressed and heated. This boundary travels with the
particle velocity u behind the shook front. When the rarefaotion tip
reaches this boundary it proceeds with a slightly greater velocity b2
until it eventually catches up with the shook front.

The various velocities with w1ich the different sections of the
shook wave travel in the tube are derived belowi

b 0 a (VII.1)0 0

where b0 is the velocity of the tip into the compression chamber*
After reflection from the closed end of the compression chamber and
after reaching the eostant pressure region P the velocity of the
rarefaction tip is

b( u + o (VI.2)

where U S y - Equation (III,9a)
h7(1 + 6 y)

1/7
n() a 1_=_a__ )aquation (V.4)

so that

4(y - I) )velocity of tip in (VII.2a)
1 0o1 /7(1 +6 y) cool gas.

The velocity of the tip after passing the gas boundary is

b2 = u +o (VII.3)

where u is the same as above and

o=a0  Eqation (III.8a)-

so that

b a [5 1-) +- Jv y) + velocity of tip (VII.3a)b2 a L 'Tl 0- .) Jin hot gas.

After breaking the diaphragm the velocity of the trough of the

rarefaction wave back into the compression chamber will be v0 which is
the local velocity of sound minus the particle velocity. So

v 0  a 1 -u (ru.4)
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so that

F (y - volocity of trough toward
v a o  - the closed nd of the corn- (ViI.4a)

/70. + 6 y pression chamber.

It may be noted that v = 0 when y = 2.88 which means that the
trough is stationary at thii shook pressure. It moves toward the
closed end if the pressure is less than 2.88 P and moves toward the shook
front if the shook pressure exceeds this value.

After reflection and after the tip of the rarefaction wave has
moved out of the variable density region, the trough of the rare-
faction wave has a velocity v whioh is the local velocity of sound in
a gas cooled by adiabatic expinsion from a pressure P0 to a pressure

r

V =c (VII.5)

where /
*2 = &o( .

.0

bur1/7 P 1/7 p 1/ P 0/7'-

but. () 2(j--) " 1 =.2(-) (Z,) - 1 from equation

and P = .' and P y
.0 0

so 0 = a 2 1/

but ~ 1/7 / 17 from equation (Ve4). k. y - .

/7(l +6 y)

so that 2(y 1 velocity of the
v1 =a [ - trough in cool (VII.5a)Vf7(l 6 y)_ gage

After crossing the gas boundary the velocity of the trough is
equal to the veloc.ty of sound in a gas cooled from a pressure P and
sound valocity o to a pressure P and a sound velocity a plus the
residual particle velocity whic s norossing

gas boundary.

Fom section II we have the equations which give the value of Pr2
after passing through the gas boundary as r2

l/7 2a 1/7 c-a 1

(r2) a + a vu.I
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a = 1/7now'a1=&0()

0

P 1/7
and frAo adiabatic theory of the tube we have - 2 y

so a : 'a2 /)

and a = a0 L 1 +6 1 2 fro equation (III.8a)

Fc the theory of reflection of adiabatic waves (section II) we have

Oubtituting these values we have then
P. 2. 0o o.A-Z 0/ 0- (3 - 2 aa) + 1  (VII.r)

+ a (3. o +

So the velocity of the trough will then be

V2. -U-U +a .

here u 8, (Y - 1) the particle velocity behind
i/(l+ 6 y) /7 y(s .) the shook wave

u .._ /7] the particle velocity caused

U 1  .0 -M by the rarefaction wave

r21/7
and a =o €--

Substituting values for these quantities we then have th&t the
velocity T2 of the trough in the hot gas is

L7 y(6 + y)"o a '€.

The position of the shock wave in the tube at any time may be
graphically portrayed in a chart which shows the locus of the various
points as a function of time and distance down the tube. If distance
along the tube from the diaphragm divided by the length of the com-
pression chamber is plotted as x along the abscissa and if the
quantity aot/ o is plotted along the ordinate, then straight lines may

be drawn (representing the locus of the points as a function of tim)
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with the position of the diaphragm as the origin and at angles a", 2,
eto, with the abscissa. The tangents of the anglos .g 'a # etc., are
the inverse functions of the velocities of the point ieA W then have
defined for the various components representing shook-Velocity, trough
velooityO rarefaction tip velocity, etc., the tangents of the angles
of their loci as follows#

a0

tan G 1  = shock front (VII.9)
0

tan 2 = - gas boundary (VII.10)2 u

tan 03  - rarefaction tip in (VII.!l)
o compression chamber

tan 0Q4 rarefaction tip in cool (VII.12)
1 qgas

tan 9 = rarefaction tip in hot gas (VII,13)
5 b

a
tan , = . trough into compression (VII.14)

v 0chamber

tan 0 = ± trough in cool gas (VII.15)
7 1

tan 8  = L2 trough in hot gas (VII.16)
8 v2

A time distance chart for a shock wave having a pressure ratio
y = 2 is shown on a following page. (Graph 7.) From it a great deal
of information may be gleaned. For example, the length of the ex-
pansion tube necessary to insure that the shock wave have a pointed
top like a blast wave can be found at the intersection of the locus of
the shook front (line U) and the locus of the rarefaction tip (line b ).
In this case it appears that the length of the expansion chamber should be
15 times the length of the compression chamber to obtain this condition.
The duration of the shock wave from front to trough can be found in
terms of a0t/4a at any distance x along the tube by measuring the

vertical distance from line U to the line v , In similar fashion the
duration of the flat top of the shock wave it any point x is found by
a measurement of the vertical distance from line U to line b,.

Another method of showing the change in shape of the shock wave
while passing through a homogeneous medium is to show the loci of the
points relative to the shock front as in the first page of this section.
In this case the abscissa is the length or duration of the shock wave
while the corresponding ordinate is the distance along the tube or
time. In this case the angle of the locus with the ordinate is d where

v

tan a = v -1 (VII.17)

where v is the velocity of the component under consideration and U is
the shook wave velocity.
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The critical length of the expansion tube which first allows the
rarefaction wave to reach the shook wave may be solved by calculation
rather than graphically if we proceed as follows,

After the diaphragm is broken the boundary between cool and hot

gas moves down the expansion chamber with a vlooity u, where

5ao(y- (
0S- (T,6 y)8)

The distance that it has moved at the instant that rarefaction
break reaches the end of the compression chamber is

Lo
d ruT but T =--

0

go, d. u aLoso d u--- - (V II.19)
~a

0

The length of the cool'gas column at this instant is

nrL 0  + L, (.+(+ Cy -L1), (VII.20)
0 (1 7(+ I y

The time of travel neceiaary for the rarefaction break to reach the cool
gas boundary is

T = n _7 +n 6o (VII,21)u "- 1_ -)
/7(1 + 6 y) -

The distance x from the diaphragm at which the boundary is reached is
UL L----- u(0 (VIIo22)x= uT+ u ( +vn c
a F

0 0

Substituting from equation(VII.21) we have

5Lo(y-l) = ( 146Y 4( -1)) (VII.23)

7(l + 6 y) 7(l + 6 7- (y -l)

The length of the hot gas column at the tim the cool gas boundary has
progressed a distance x down the tube is

z T(O- u) where T =-
U
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50 3tx :( -1)

X g . (VI L 24)

The additional distance that the rarefaction break must traverse to
pass through the hot gas end reach the shook front is

1  b2 T' where T' =
2

so 11 ,  . U l+6 y

5(y - 1) (y ( ) +

so Z1  X 6( + y) [(7 y() + V7 y(6 + y)) (vu. I25)g/iy¢8 .y) -(6 y)]
Tke total distance from the diaphragm at which the rarefaction break

overtakes the shook wave is the sum of these two distances x and x

so z+ i + y . r7 y(6 + ')+, 6(y - )]so Le 5k -~z q -7 55'-1y(e6+-T)- (6 +y)/

Wethen set w -.

and + (6 + Y), E7 y(6 + j(y -1)"

5(y - 1)[ ,7 y(6 + y) - (6 -+ y,)]

so that - = f 9 for.-he critical length of tube.

The values are tabulated below.

P AO Pos lb L

1.25 1.558 8.2 0,3565 75.85 27.0
150 2.29 18.97 0.712 25.81 18.4
1.75 3.20 32.35 1.064 15.0 15.95
2.00 4.36 49.4 1.418 10.64 15.1
2.50 7.28 92.3 2.12 7.03 14*9
3.00 11.40 153.0 2.82 5.50 15.5
4.00 24.16 340.0 4.255 4.142 17.60

These critical lengths in terms of y and Pos are plotted on the next
pages. (Graphs 8 and 9.)
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Graph 8

Critioal Ratio of Lengths of Expansion Chamber to Length of Compression

Chamber as a Function of Shook Strength (y)
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VIII

THE IMPULSE IN THE SHOCK WAVE AT THE POINT OF CATCH-UP OF THE

RAREFACTION WAVE

A solution of this problem may be attempted by assuming that the
energy released from the compression chamber by the expansion of the
gases from a pressure P to a pressure P , the pressure in the trough
of the reflected rarefastion, is essentihlly conserved and is the
er'irgy available to do work i the gas behind the shock wave. The
energy in the shock wave is conceived to be the internal energy of the
compressed gases in the shock wave if these gases are expanded adia-
batically to the pressure Pr of the rarefaction wave following the
shook wave plus the kinetic energy of the gas particles in the shock
wave. The assumption of conservation of energy will be examined later
to determine the error introduced by it.

If the concept of the energy in the shock wave outlined above is
adopted it will then be permissible to assume a-relationship between
the energy in the shock wave and the impulse associated with it of the
following form

I (VuII,)

where 3 = energy of the shock wava
I = impulse of the shock wave as measured by a gauge side on
U = velocity of the shock wave

and k = a dimensionless factor to be determined later. It is
a function of the shock strength and the shape of the pressure-time
curve of the shook wave.

Equation (VIIi.l) will be used to calculate the impulse of the
shook wave when we have evaluated k and E, the energy in the shock.

The work done by a unit mass of gas in adiabatically expanding from
a pressure P0 to a pressure Pr is

-
(VIII

/00P PC1/

r

P r
so0 ec 1 =-~T a [ (Y ] energy per unit (VIII.2a)

o -r Y a r - mass of gas.

The available energy per unit volume of gas at a density /1 in a tube
of length La and unit area is

e /Oo Lo (so -er)
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so 0 IJ and if = 1.4

0 T 0 0 L ()J (vIuI.3)

This is the energy available for .adiabatic expansion in a cylinder of
gas of unit cross setion, of legt~h Lo, at a pressure Po and expanded

to a pressure Pr"

If P is the peak pressure in the shook wave and P is the initial
pressure in the compression and expansion chamber we tRen define the
ratio

PP = y and P/ =.

If we consider the initial formation of the wave to be adiabatic
we can get an explicit expression for y in terms of Ca which iss

y1/7 2 W-1/7 equation (VI,5a) (VIII.4)
- I7

This assumption which is made for computational convenience results
in an error which may be determined for any- range of b;.oek pressures
from the table at the end of section VI. For-the range of pressures
considered here it may be responsible. for a maximum error of about 2
percent at the highest shook pressure.

Prom the theory of reflection of adiabatic waves we find the ratio

P 1/7

( 2 /? - 4 equation (II.8b) (VIII.5)
0

consequently in terms of ca

S1/7 1/7 (3 1/7,
. ,1/7 (viii.e)

0,+

P 1/7 P 1/7 p 1/7

but (IF-) = )) ('")
r 0 r

-2/7 1/7 2

so.(j0) = (3 - j ) (VIII.7)
r 6/7 +

then ..P L. ./7 (viu.)[1/7+1)2j
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which is also equal to E = 20 P0L0 L /7 + 1) (VIII.Ba)

This equation (VIII.8a) then gives the value in terms of Co'of the
available energy in a tube of unit cross section and length Lo when
expanded to a pressure P which is determined by the reflection of the
rarefaction wave produoef by a bursting diaphragm.

If a shook wave of pressure P is traveling into undisturbed air
of pressure P the velocity of the shook wave is U, where U is given by
the equation

U = a /17(VIII. 9)

Again using the explicit expression for y in terms of w. given
above for the adiabatic case we have

a + 7 .6841 1/2 velocity of shock (VIII.IO)
u/ W7 wave in terms of7' P 0 _- o

We now have expressions for two of the factors involved in equation
(VIII.l) and it remains to evaluate the factor k in order to arrive at
an answer. One might infer from an analogy with the mechanical case
where k = 2 that the factor might lie in the neighborhood of this value.
The concept of stored energy in the shook wave coupled with some reason-
able assumptions as to the shape of the pressure-time curve of the shook
wave enables us to make a reasonably accurate determination of this
factor which does turn out to be of the order of magnitude of 2. -,

We proceed to evaluate k in the following manner.

Fcum equation (VIII.) we see that

-'U
k - U-for any blast wave, (VIII.ll)

The energy in a shock wave consists partly of potential and partly
of kinetic energy, the proportions of which change with the amplitude
of the shock. The potential energy is considered to be the available
pressure energy of the gas in the shook.wave, while the kinetic energy
is the energy of motion of the particles in the shook wave.

The available pressure energy of a slice of gas somewhere behind
the shock front is

1 ( P 0o 1 Po P /00n~l .'=r (-, " ' o : --1 o'e 1) (VIII.12)
0 00
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but PA = y and Pl@o =

so

1_ P Energy per unit mass of gas
0 1  ( 1) if the gas were expanded-1 ;V 7 (VIII 12 &)
0o adiabatically to a pressure

P 0 and density /"

The energy per unit volume is /0 A E and in

AN 1 P (vI.I13)= 1 Po(y- x)(vx.)

and if ;e = 14 (air)

then Sp = P P0 (y - x) (VIII.lSa)

From equation (111.5) section III, we find that the ratio of
densities x in a shook wave is

x l+6y
64y

20 Potential energy in a slice of

AEp 1% gas of unit cross section and (VII1.13b)
p 2 o 6 4 unit length at pressure P and (II1b

density /,

The total potential energy in the blast wave is then

E dx (VIII.14)
P0

The kinetic energy per slice of length dx and unit area is

S u 2 dx where u is the particle velocity
and /0 is the density

/0 0 u  dx15a)

0

but u2 2 ( )2 and 6y
0

1 25 a2  (Y- l1 2 dx

2  T 0o - 6 yl
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and the total kinetic energy in the wave is then

2 6 a 2  / O 0 ( Y _ ) 2 d ( V I I . 6 )

but a2  7 P0
0X

so, 5 % (Y - y 1)  2 (VIII.16a)

The total available energy in the shook wave is then the sum of the
kinetic and potential energies which is

o y2.1+ 1(y-l)2 dx

A o 1y ) dx total energy in the (VIII.l7)

PO f shook wave

Now if the shook wave changes in duration slowly enough while

passing over its own length we may put

dx = U dt (VIII.18)

so that these equations may be written as

t
3 P a t (VJIII.19)

0

2o=/ 5I)11 dt (VIIIo20)
Sk= T P (6 4y

St 5 Poy' 6 y dt (VIII.21)

We may substitute z = y - 1 as a variable and make an assumption
as to the rate of change of z with time. Oscillograms of the pressure-
time variation show that the wave shape approaches triangular form at
the lower pressures while at the higher pressures it approaches an
exponential form.
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Assume that the wave shape is exponential and that

z a- then dt 1 dz

when z 0 t r-oO, z = 5, t = 0

80 that equation (VIII.-1) .ay be written after substituting for y and/"dt E5 Pc" ( z + ) d, ( VII.2 )t= CR 7 ,z

'0O

5 zdz IdiIt -- z V-+,z7
0 -

-7 + z 7 log (7 + z)J iog (7 + z)]0

- ...2..L~ 6 log (i 4 (VI It.25)

The impulse measured side on in a blast wavo is definid as

I Pasdt P 0  (y 1, 1) dt P0  z dt (VIII.24)

2. dz

but dt -- -

so I = J dz 0 (VIII.25)

Then IU =

and k IU

therefore the value of the factor k may be written as

k = l e4z (VII.26)

The term log (1 + may be expanded in a series to give the
approximate formula

k = 2z.. (VIII.26a)

5(l + 3- 2 .. ).

which has the value 7/5 when ;---40. This is of the order of magnitude
of the mechanical factor 2 as mentioned before.

so



If the explicit relationship y = 128 W is used the factor
k may be written (W I/7+ i)

k128 - (2 /7+ l)71 (VIII.26b)

[28 W -(c 1 /7+ 1)'fI + 6 log. 6 + )}s

Recapitulating the formulas w4'"have

x = -- (vuix.n)

I,20 P (VII I. 1a)

o: Eo +o oJk, 128 ea 1/ 1)7 (VII.2)

Combining these factors we then have the expression for the impulse
in the shock wave in terms of the dimensionless quantity Ia0/ oLo.

This equation will hold at the point of catch up of the rarefaction wave
with the shook front if the energy lost by the shock wave in passing

down the critical length of tube is ignored. This will result in an
error of less than 4 percent in the calculated value of the impulse.
We have then

a = 10.58 8W /

o' - + (VI.0

(viiI.27)

[~a~a~Q rl (co~l+ l 1/7 4 1 8w_ ___

This relation is plotted in term e of ( q - ) t Graph 10.

Il. THE CHANGE OF ENERGY AS ThE SHOCK WAVE PROGRESSES ALONG
THE EXPANS ION CHAMBER

When a shock wave passes over a mass of gas it changes the entropy
of tha gas and leaves it in a different energy state in general than it was
originally. This change in energy can be found by differentiating with
respect to time the equations which represent the energy of the shook
wave t
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Mraph 10

Impulse in Shook Wave as a Function of Exoess Pressure in Compression
Chamber
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If one considers a shook wave in which the pressures, densities, and
particle velocities have values indicated by the subsoripts on the dia-
gram an follows,

P21pou 2 :?V/"u :
,I . 0i

x2 x 1 o

the coordinates at any instant of time of the boundaries between these
regions have the values xo, x1 and x2. The total energy in the shook

wave then is given by the integral of the sum of the kinetic energies of
the particles and the increase of internal energy of the gas. This is
given below as

XX-  1+ - )dXE0)d°i 21u122(11.'

The change of energy with respect to time is the derivative of this

expression with respect to time and is

t 01 1 x 1  1 2 2 20a+ 2x

i f- u + E - 13)dx ( X.2)

NOw .;;t U the velocity of the shock wave

and
Px 2  where a. is the velocity of sound in

a2 + u2  the trough and u is the particle (IX.3)
velocity in the %rough.

So the rate of energy change is

t =/O u( U 4B '0 )" , 2(a2 2)4 u22+ H Eo)

fO u 5 + E - 3 dx (1.4)
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The last term in the integral sign is equal to

1 2 5 p-50/0d

j# T u U2 n AO 5 C) p d2

'(ax

but frm~ the quAt ion of motion and oontinuity we have

Substituting 1hese vtxkioa the integ-ral becomes

5 2P R u 1 3 p 0 a .

7 up " ") P U- ")/0 ax U

+p2 ,E * u) -7 ~ .U 9P) 5 GO P

a ~ l 7

bu 1 P 5 7 (.8

So then performing the integratiou and substitutug in tho limits we find
that it is equal to

1 3 o5+ 7 1  5 Po,

"f 2 V2(

Then adding all terms we have

-- = E I- l 2) 2 u * 2 0) - / 1  u1 si- o)

-PP + Pe 2  
(110)
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and uinbe /0 !(U - ul ) = 4 0U by the equation for conservation of mass,
then

11 221
at = 14"(u + B-0) m Piul - ,o 2 a2 ( U2 + B32 - Bo ) + P2u2  (IX.ii)

However as a consequence of the conservation of energy as defined
in the Rankine-Hugoniot equations the first two terms cancel so we are
left with the expressian for energy change as follows,

a BI B 2 + where u2 must be given (Izol)
0 2" /as u A2 o' P2 U2 the proper vector sign.

This equation expresses the idea that the energy change as a
function of time is the difference between the total energies of the
gas as it enters and leaves the shook wave plus the work done on or by
the gas after it leaves the shook wave depending on whether u2 has a
positive or negative sign.

Let us consider the shock wave after the rarefaction trough has
passed the ias boundary. The reason for doing so is that until this
stage is reached the gas in the compression chamber is still giving up
energy to the shook wave but after this stage the shook wave starts.to
dissipate and to feed back a small amount of its energy into the eca-
presuion chamber in the form of a compression wave.

After this point u 2  u - ur

where U and ur  5o I (IX3)
e 7 y(6 + y)

P 1/7
so u 2 =5o [ i + 2(IX,)

27 y(6 + y) " ,.

0 =a + where y=.-- (I.15)

Now from the theory of reflection and transmission of rarefaction waves
as given in section II, we have

1/7 P 1/7
2a r1  c .a

P P -+ ao + "-i

where o speed of sound in the shook wave

a= speed of sound in gas that has been cooled by expansion frcm
pressure P0 to Pr
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From section 1I we have

S1/7 /
= 2(I- ':.17)

P 1/7 1("

- (y -_) _

~,/7(1+ 8 y)
ro-- l , 7(1 +6 y)-Z y- i) (11.19)

1-71 ~y)-7(y -

(p i~/, P )1/7 1r r

and el = a° (9 =.a(-±)° ~.p

soo OX0o')

a- ,. 2(y- ,1), (IX,20)

The ratio of densities /0_J/0 2 can be found by considering the gas
to be compressed according to tfe Rankine-Hugniot equation of state and
to expand according to the adiabatic equation of state so that

"1 + 6 y and 12. P 2 5/7

=0 6 +y

then / _2) (.21)

then P0  Y5/7 /'o (2) J Y5/7 + /2
7r. - P- . 6(,P:-;;. (11.22)

2 0 0

P 5/7 p-5/7 + .(t23
then /0 ( '% () . /80 106* y 1,3

The change of internal energy E2 - is equal to

5P2 , Po rPo P2
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Substituting for 0/"° 2 we have

5 P 0 Y /7( + 2A -P

5 P° { y57t6" -) ( 2 2 ] (IX.25)

and 1/ 7 ( + y 2 1/7

'.
P) '

Example y 2

oa - a6r l. ao00 09 9 77

0
a1  = 0.790 a

1 0
p 1/7

(-P) ' = 0.902

p 1/7

( ) = 0.9965
0

U =--0.0194 a
1 2 P

2 0,000263.7-

0.

"2 = 0.978/o

P
E2 - . = 0.0025,5

a2  = 1.00 a,0.,

then

at = oa ° [0.978 x 1.00 (o.Oo 3+ 0.0025) (0.977 x 0.0194

P a (0.0165)

The total dissipation Ed = -- t = 0.0165 Poaot

From the diagram of section VII we find that the transit time of therarefaction trough from the gas boundary to the point of catch up is

11 a so that aot = 11 L 0ao
0

Therefore the total dissipation Edis 0.181 POLO.
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The energy oriCinally in the wave is

10 0P0L0 [.(2 - 7)6_] = .3 PoL0  (IX.,27)

so that, the ratio of the energy dissipated to the total original energy
is ,'

Ed 0o181 0.045 Q5%

This gives a measure of the accuracy of the calculations of impulse
which are based among other things upon the assumption of oonservation of
energy of the shook wave. Presumably then at the pressure level y = 2
the error in the calculations should be of the order of 5 percent*

L AN EXPEaIMENTAL DETEMINATION OF THE POINT OF CATCH UP OF
THE RAREFACTION WAVE AND THE IMPULSE OF THE SHOCK WAVE IN A TUBE

ABSTRACT

Experiments are reported here which show that,

(A) The impulse in the shock wave in a ttbe at the critical
distance is very nearly proportional to the excess chamber pressure and
can be calculated by considerations of the energy in the shook wave.

(B) The length of expansion tube necessary to allow the rare-
faction wave to catch the shock front and to produce a peaked shook wave
can be found from a knowledge of the various wave velocities and is of
the order of magnitude of fifteen times the oompression chamber length
at the higher shook pressures.

Note: The complete paper on this subject will be found in AES
7 February 1945.
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APPENDIX A

A SIMPLE DEIVATION OF THE EQUATION FOR THE TOTAL ENERGY IN A SHOCK WAVE

Assume a tube of unit cross section open to the atmospheric pressure
P at one end and closed at the other end by a weightless piston. The
a r behind the piston is evacuated to avoid any oomplications duo to the
formation of rarefaction waves so that the static pressure on the piston
is P0 e Now let the piston be. acted upon by a suddenly applied uniform
force P which causes it to m64e with a uniform velocity u until the
piston has moved a distance x0  The total work done by the piston is
then Pxo.

The motion of the piston will produce a region or compressed gas
ahead of the piston whose pressure is P and whose boundary will be a
shook front of velocity U. The velocity of the piston will be u, the
velocity of the gas particles behind a shock front of velocity U and
pressure P. The shock front will then move a distance Ut.while the
piston moves a distance ut. The length of the shook wave at the time t

x
will be (U -u)t. Let t = then x the length of the shook wave

at the time the piston has moved a distance x will be

U-u x 1 Ux - x and -=-- I (A.1)
U 0 x uo

The energy in the shock wave will then be equal to the energy per
unit volume times the volume of the shock wave.

Since the tube is of unit cross section then this is

(-) . x E the total energy in the shook wave (A,2)

This in turn must be equal to the work done on the piston which is
PX.

x PP PY 0 where y - (A.3)
1 1 0

But from the shook wave equations derived from the condition of the
Rankine-Rugoniot equations we have

U 1 + 6 (A.4)

and - (A.5)

Xo = (y- (A.6)x1  6 +
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Consequently for a flat top shook wave

dE 5 y - (A.7)

and the total energy of a shook wave of arbitrary shape is given approxi-
mately within an error of 2 percent, providing y is no larger than 3, by
the following equation

= S dx (A.8)
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